

Insect Protein – International Quality and Safety findings

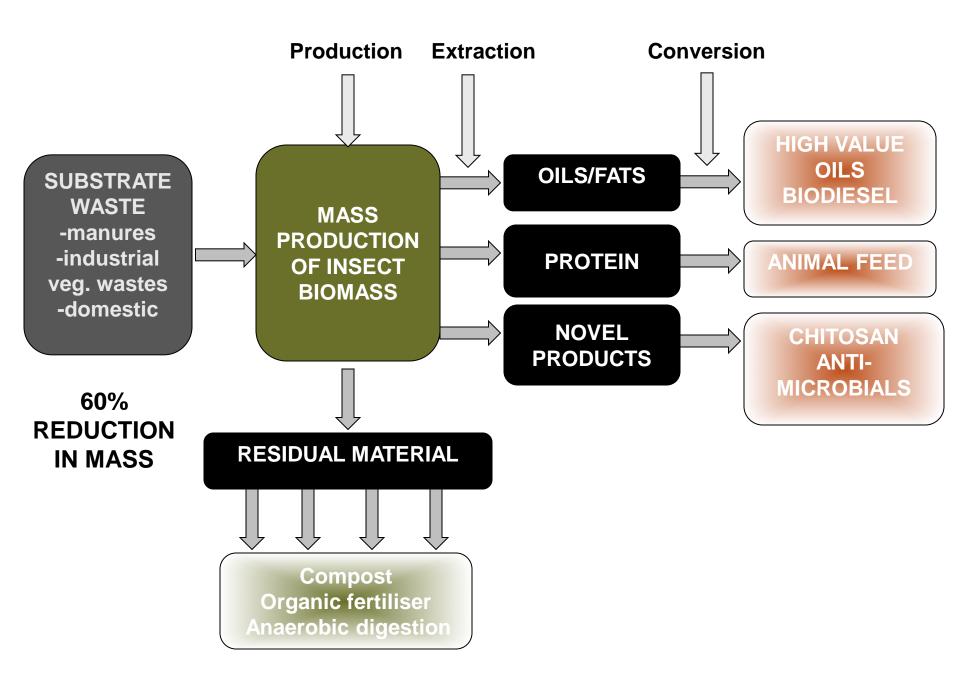
Dr Adrian J. Charlton adrian.charlton@fera.co.uk

www.proteinsect.eu

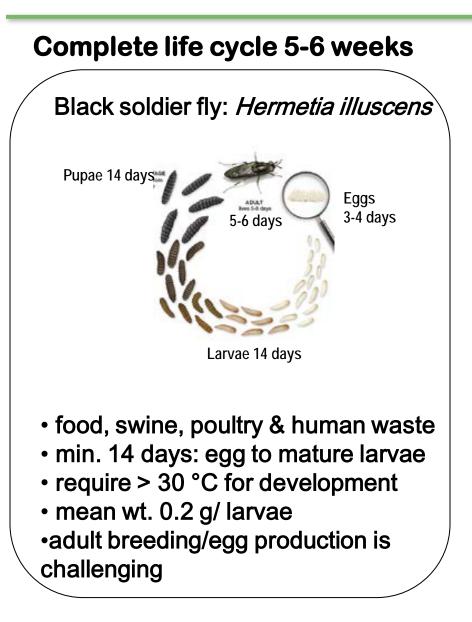
Insect Protein Conference Insect Protein – Feed for the Future

in 🎔 🗗

Date: 27 April 2016 Location: Brussels Highly efficient at the rapid conversion of a range of "waste" substrates into biomass


A natural component of animal diets including; fish, birds, reptiles and mammals

Protein digestibility (86-89%) higher than most vegetable based proteins


Protein content (30-80 % d.m.) Fat content (5-60 % d.m.) Fibre content (4-60 % d.m.)

Flies

Complete life cycle 3-6 weeks House fly: *Musca domestica* 15-25 days Pupa 10-20 days food, swine & poultry waste 4-13 days: egg to mature larvae require > 17 ° C for development • mean wt. 0.02 g/larvae

• 500 eggs/adult

Europe: Current legislation is a major barrier to the use of insect protein in animal feed.

Catalogue of Feed Materials (EC 68/2013)

> No entry for insect meal (listing for "whole or parts of terrestrial invertebrates")

Directive EC 2002/32 Undesirable Substances in Animal Feed

Insects must meet requirements (sets max levels of contaminants)

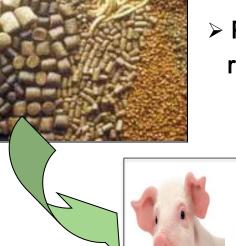
For processed insects - Regulation EC 999/2001 prohibited all Processed Animal Protein (PAP) from use in animal feed

Now partially lifted (regulation EC 56/2013), PAP derived from non-ruminants is allowed to be fed to fish

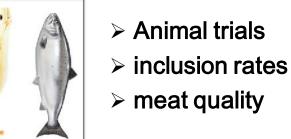
Regulation EC 56/2013 does not apply to processed insect protein


Deliberate feeding of insect protein to farmed animals intended for food is not currently permitted under EU law

- Substrates- animal manures
- Low value wastes
- Insect rearing systems (China, Africa, UK)



- > Nutritional value & quality
- Safety (Chemical & Biological)
- By-product evaluation



- Regulation
- Consumer perception

Processing- crude vs refined protein

PROteINSECT

INSECTS AS A SUSTAINABLE SOURCE OF PR

www.proteinsect.eu

Quality and Safety

- Little published data about the risks of using insects in feed and how these can be managed.
- Robust nutritional data also sporadic.
- Performance traits of animals fed on insects need to be established.
- Analysis of meat from insect reared animals to be undertaken (e.g. taints).
- Potential for high value by-products such as fats and oils.

Safety testing (DIRECTIVE 2002/32/EC)

- Heavy metals (As, Pb, Hg)
- Pesticides
- Dioxins and PCBs
- Veterinary medicines
- Mycotoxins
- Salmonella

Chemical Safety

- Risks will be dependant on feedstock and processing.
- Different feedstocks and insect combinations = different risks

Examples might include:

- **Bioaccumulation** of metals and environmental contaminants.
- **Concentration** of natural contaminants such as mycotoxins.
- **Transfer** of toxic residues e.g. pesticides

Metals

- Toxic (e.g. cadmium, mercury, arsenic, lead)
- Nutritional but toxic at low levels (e.g. selenium, zinc)
- Nutritional but toxic at high levels (e.g. iron, potassium).

EU regulations in feed range from 0.5 to 5 ppm.

Initial tests show levels in some insects higher than permissible EU limits for feed

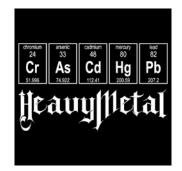


Image courtesy of www.angrygirlwear.com

- Multi residue screen. Total 416 compounds.
- Covers non-permitted pesticides (e.g. DDT) and permitted (e.g. dimethoate).
- EU regulations in feed range from 5 to 200 ppb

What is ppb?

One ppb is 10⁻⁹ the equivalent to finding one person in the population of India or adding one grain of salt to a 10 ton bag of crisps.

Dioxins, PCBs and PAHs

70 compounds:

- 28 Polycyclic aromatic hydrocarbons (PAHs)
- 25 Polychlorinated biphenyls (PCBs)
- 17 Dioxins

Persistent organic pollutants enter food chain through incineration (e.g. forest fires, use of fuels for drying).

Known to **bioaccumulate** in fat.

Highly toxic.

EU limits in feed range from 0.75 to 10 ppt

What is ppt?

One ppt is 10⁻¹² so adding one grain of salt to a 10,000 ton bag of crisps!

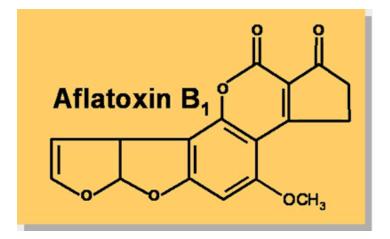
Veterinary Medicines

68 EU regulated compounds:

- 17 Sulphonamides
- 7 Tetracyclines
- 8 Penicillins
- 8 Cephalosporins
- 10 Quinolones
- 13 Macrolides
- 5 "Others", e.g. Chloramphenicol

Exit animals through faeces. Antibiotic resistance risk if transferred.

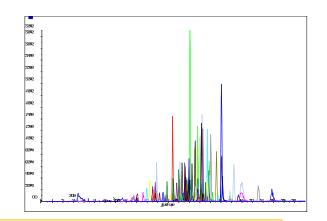
Also screening to detect the presence of 492 compounds including those known to be used worldwide.



Limits in range 0.2 – 150 ppb

Mycotoxins

- Natural plant toxins risk if rearing on food waste as produced by fungus.
- Aflatoxin B1 has 5 ppb regulatory limit 2002/32/EC.
- Fumonisins, deoxynivalenol, T2 toxins, Ochratoxin A and Zearalenone. all with recommended limits between 50 and 5000 ppb.

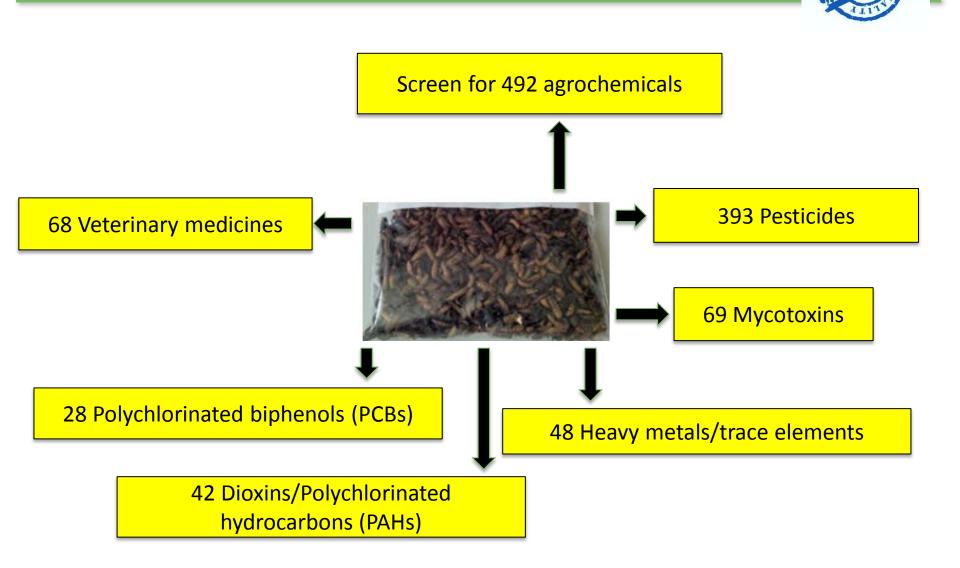


- Broad non-selective analytical approach.
- Data scrutinised against a database of currently 5,500 compounds including; shellfish toxins, plant toxins and pharmaceuticals.

Risks we may not detect at the moment:

Some inorganic compounds (e.g. nitrite). Proteins (e.g. prions). Insect toxins. Others (e.g. Brominated flame retardants).

Shellfish toxins cause paralysis at very low levels of exposure


Production systems

Chemical safety

Exploring the chemical safety of fly larvae as a source of protein for animal feed

A.J. Charlton^{1*}, M. Dickinson¹, M.E. Wakefield¹, E. Fitches¹, M. Kenis², R. Han³, F. Zhu⁴, N. Kone⁵, M. Grant⁶, E. Devic^{7,8}, G. Bruggeman⁹, R. Prior¹⁰ and R. Smith¹⁰

¹Food and Environment Research Agency, Sand Hutton, York, YO41 1LZ, United Kingdom; ²CABI, Rue des Grillons 1, 2800 Delémont, Switzerland; ³Guangdong Entomological Institute, Chinese Academy Of Sciences, 100 Xianlie Road C, Guangzhou 510070, China P.R.; ⁴Huazhong Agricutural University, No. 1 Shizishan Street, Hongshan District, Wuhan, Hubei Province, 230070, China P.R.; ⁵IER, CRRA-Sotuba, BP 262, Bamako, Mali; ⁶Grantbait, Elm farm, Rectory Road, Roos, HU12 0LA, United Kingdom; ⁷Fish for Africa-Ghana, Spintex Road, Baatsonaa, Accra, Ghana; ⁸Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, United Kingdom; ⁹Nuscience, Booiebos 5, 9031 Drongen, Belgium; ¹⁰Minerva, 12 Basepoint, Andover, SP10 3FG, United Kingdom; adrian.charlton@fera.gsi.gov.uk

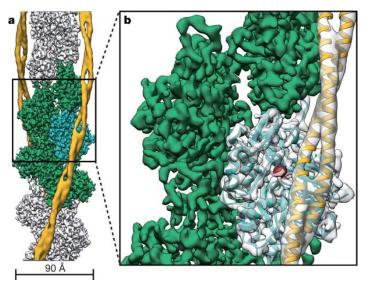
> Received: 26 August 2014 / Accepted: 15 December 2014 © 2015 Wageningen Academic Publishers

Contaminants below recommended max. concentrations (EC, WHO, & Codex)

- Cadmium high in 3 samples

Microbiological Safety

- Feedstock and insect species dependant
- Potentially managed through processing e.g. heat, pressure.


 Anticipated persistent risks may include; Salmonella spp, and Hepatitus E.

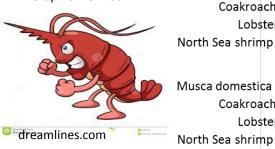
Allergenicity in Humans

- Very little information available about insect allergens
- Low probability of insect proteins being contained in meat/egg/fish produced from insect-fed animals.
- Higher risk from insects as food.
- Potentially allergenic proteins include tropomyosin

<u>Tropomyosin</u>

- main allergen in shellfish
- protein sequence very similar in insects
- some insect tropomyosins known to be allergenic

Tropomyosin sequence alignment



Musca domestica Coakroach Lobster North Sea shrimp

Musca domestica Coakroach Lobster North Sea shrimp

Musca domestica

Graphicriver.net

Musca domestica Coakroach Lobster North Sea shrimp

Coakroach

MDAIKKKMOGMKIDKDAALERAATCEOOARDANLRAEKAEEEAROLOKKIOTVENELDOT MDAIKKKMOAMKLEKDNAMDRALLCEOOARDANLRAEKAEEEARSLOKKTOOIENDLDOT MDAIKKKMOAMKLEKDNAMDRADTLEOONKEANIRAEKTEEEIRITHKKMOOVENELDOV MDAI KKKMOAMKLEKDNAMDRADTLEOONKEANNRAEKSEEEVFSLOKRMOOLENDLDSV ******* ** ** ** **** *** **** **** ·** · **

QEALTLVTGKLEEKNKALONAESEVAALNRRIOLLEEDLERSEERLGSATAKLSEASOAA MEQLMQVNAKLDEKDKALQNAESEVAALNRRIQLLEEDLERSEERLATATAKLAEASQAD OEOLSLANTKLEEKEKALONAEGEVAALNRRIOLLEEDLERSEERLNTATTKLAEASOAA OEALLKANAHLEEKDKALSNAEGEVAALNRRIOLLEEDLERSEERLNTATTKLAEASOAA * ** *** *** *** ********************

DESERARKILENRALADEERMDALENQLKEARFLAGEADRKYDEVARKLAMVEADLERAE DESERARKILESKGLADEERMDALENOLKEARFMAEEADKKYDEVARKLAMVEADLERAE Coakroach DESERMRKVLENRSLSDEERMDALENQLKEARFLAEEADRKYDEVARKLAMVEADLERAE Lobster DESERMRKVLENRSLSDEERMDALENOLKEARFLAEEADRKYDEVARKLAMVEADLERAE

ERAEOGENKIVELEEELRVVGNNLKSLEVSEEKANOREEEYKNOIKTLNTRLKEAEARAE ERAESGESKIVELEEELRVVGNNLKSLEVSEEKANLREEEYKQQIKTLTTRLKEAEARAE Lobster ERAETGESKIVELEEELRVVGNNLKSLEVSEEKANOREEAYKEOIKTLANKLKAAEARAE ERAETGESKIVELEEELRVVGNNLKSLEVSEEKANOREEAYKEOIKTLTNKLKAAEARAE ** ****************************** · ** ******

FAERSVQKLQKEVDRLEDEYIIEKERYCLVGDSLDEAFMDLIPGLEPFYTPRNPKPPTPK FAERSVOKLOKEVDRLEDELVHEKEKYKFICDDLDMTFTELVGY---FAERSVOKLOKEVDRLEDELVNEKEKYKSITDELDOTFSELSGY-------FAERSVOKLOKEVDRLEDELVNEKEKYKSITDELDOTFSELSGY-------******

Allergen detection

- LC-MS/MS enables the identification of known allergens including tropomycin, arginine kinase and myosin light chain.
- Bioinformatics search for orthologues of allergens where insect genomes are available

 high homology may indicate allergenic
 potential.

ARTICLE IN PRESS

Sequence homology of the fly proteins tropomyosin, arginine kinase and myosin light chain with known allergens in invertebrates

M.R. Romero^{*}, A.J. Claydon, E.C. Fitches, M.E. Wakefield and A.J. Charlton

Fera Science Ltd., Sand Hutton, York YO41 1LZ, United Kingdom; rosario.romero@fera.co.uk

High potential of allergenic response to eating insects if sensitive to shellfish

Also risk of occupational exposure

European Food Safety Authority

- European Commission gave EFSA a mandate to provide an opinion on the safe use of insects as food/feed.
- EFSA working group formed in late 2014 and provided final opinion in October 2015
- PROteINSECT members and data helped to inform opinion

Larvae nutrition

• Musca Domestica larvae (dry matter)

<u>Protein</u>: 45 – 60 %

Isoleucine: 20 - 25 mg/g Valine: 20 – 30 mg/g Lysine: 35 – 50 mg/g Methionine: 10 – 20 mg/g Tryptophan: 3.5 – 5.5 mg/g

<u>Fat</u>: 20 – 35 %

Palmitic acid: 65 – 100 mg/g Oleic acid: 40 – 60 mg/g Linoleic acid: 25 – 50 mg/g

Minerals

Ca: 2 - 9 mg/gP: 9 - 15 mg/gNa: 2 - 5 mg/gK: 9 - 11 mg/gMg: 2 - 5 mg/gZn: 0.15 - 0.25 mg/gMn: 0.2 - 0.35 mg/gFe: 0.3 - 0.5 mg/g

Feeding trials

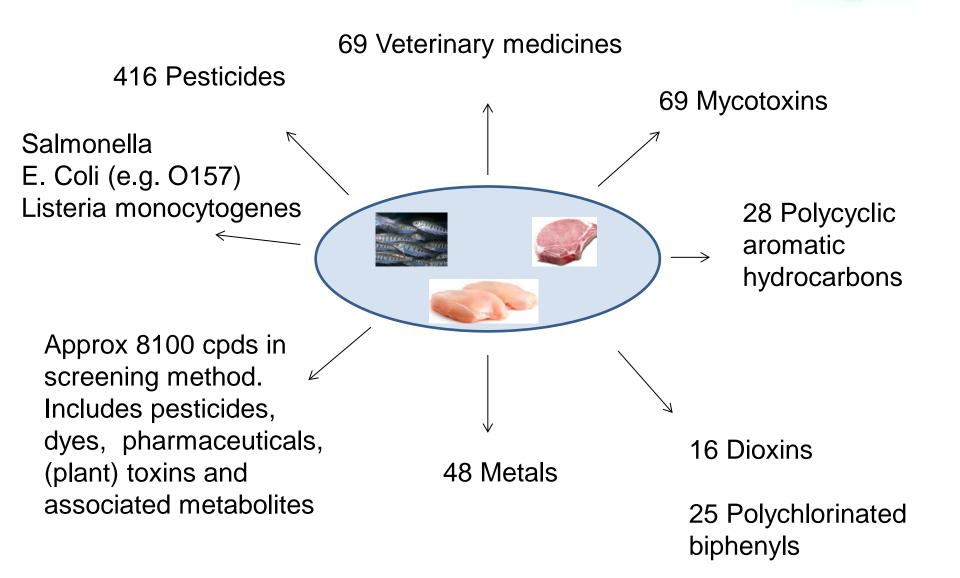
Larvae producer – fly species	Nutrition tests	Animal
(country)	by (country of	
	testing):	
Grantbait – Musca domestica	Nuscience	Poultry and
(UK)	(Belgium)	pig
Grantbait – Musca domestica	Stirling (UK)	Atlantic
(UK)		salmon
		post-smolt
FfA and Stirling – Hermetia	Stirling (Ghana)	Tilapia
<i>illucens</i> (Ghana)		fingerlings
IER – Musca domestica (Mali)	IER (Mali)	Layers
IER – <i>Musca domestica</i> (Mali)	IER (Mali)	Broilers
IER – Musca domestica (Mali)	IER (Mali)	Catfish
HZAU – Musca domestica	HZAU (China)	Poultry
(China)		
HZAU – Musca domestica	HZAU (China)	Tilapia
(China)		
GEI – Musca domestica (China)	GEI (China)	Huxu
		Broilers
GEI – Musca domestica (China)	GEI (China)	shrimps
GEI – Musca domestica (China)	Nuscience	Poultry and
	(Belgium)	pig

Animal trials

- 3 highly quality assured animal trials undertaken in late 2015 / early 2016 to European feed industry standards
- Control diets contained fishmeal and/or soybean meal. This was substituted at a range of relevant inclusion levels with insect meal derived from *Musca domestica*

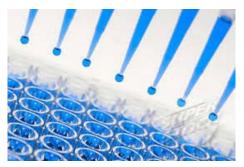
- 1. Salmon fingerlings (up to 40% protein replacement)
- 2. Broiler chickens (up to 25% protein replacement)
- 3. Weaning piglets (up to 20% protein replacement)

UNIVERSITY of STIRLING



Main aim was to understand performance of animals fed on an insect fortified diet and to provide meat/fish for safety and organoleptic testing

Animal trials – Safety analyses


Allergenicity

• Assessment of allergenicity in animals during feeding trials:

- Monitor symptoms,
- e.g., scratching, watery eyes
- Measure IgE levels: antibodies produced upon exposure to allergen.

Wikimedia.org

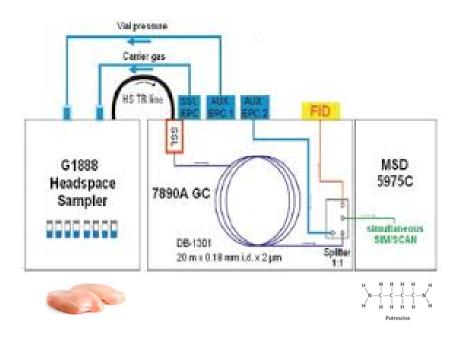
Resolvingimages.com

Animal trials – Results

• Performance of all animals were broadly in line with controls. Higher inclusion rates may reduce weight gain

 No safety concerns have been noted in fish, chicken and pork samples from analytical / microbiological results. Residue / contaminant levels < current EU regulatory limits

• All safety analyses should be undertaken on edible insects if standards are applied evenly



Animal trials: Meat / fish quality

- Nutritional profiles of meat/fish
- Product quality parameters: e.g. taints from biogenic amines

- No undesirable taints discovered
- Nutritional profile normal in final food product

Summary

- There is huge potential for using insect protein as a source of animal feed.
- There is a lot of work to do to understand and manage safety risks for both food and feed.
- Legislation in Europe for the nutritional use of insects is currently prohibitive.
- This is entirely correct until we have ensured that a robust international safety framework for insects in the food chain can be adopted.

Acknowledgements

Fera

- Elaine Fitches
- Michael Dickinson
- Maureen Wakefield
- Katherine Robinson
- Rosario Romero
- Nigel Cook

ABAgri

- Angela Booth
- John Sissins
- Heidi Neal

Nutrition Sciences N.V.

- Geert Bruggeman
- David Hermans

University of Sterling

- Will Leschen
- Emile Devic

Technology Strategy Board Driving Innovation

Thanks for your attention!

